President Couture expressing gratitude to all NMSU researchers who make us proud through their hard work and ingenuity.

To submit research-related news please visit research.nmsu.edu/news or send email to hamid@nmsu.edu
NMSU’s top researchers whose projects generated funding of $1 million or more during the Fiscal Year 2009 were honored in March. In this ceremony President Couture and Vimal Chaitanya, VP for Research, Graduate Studies, and International Programs, presented the awards to the ‘millionaire’ faculty members. President Couture made remarks about the critical role of research at NMSU and expressed gratitude to all the researchers who make NMSU proud through their hard work and ingenuity. She also reaffirmed her support for research activities throughout all NMSU campuses and extension services. Referring to the picture of the candles on the cover of the event program, Dr. Couture said, “These candles represent our bright researchers who are the light of our lives.” Asked what they meant to the researchers, one of the awardees exuberantly commented that they represented NMSU researchers “burning the midnight oil.”

About the status of research in 2009 Dr. Chaitanya stated that during 2008-2009 Fiscal Year 327 faculty members and researchers received research funding and that the millionaire researchers being recognized are responsible for 76% of the total awards brought in during 2008-09.

Below is the list of our top millionaire researchers who were honored for their stellar performance:

COLLEGE OF AGRICULTURAL, CONSUMER, AND ENVIRONMENTAL SCIENCES
Katherine Bachman
Jon Boren
Ron Byford
Barbara Chamberlin
Christopher Cramer
Leroy Daugherty
Jeanné Gleason
Robert Silver
Carolyn VanderGiesen
Linda Wells

COLLEGE OF ARTS AND SCIENCES
Kurt Anderson
Jeffrey Arterburn
Wanda Maria Bulger-Tamez
Katherine Giles
Peter Houde
Patrick Morandi
Debra Peters
Elba Serrano

COLLEGE OF BUSINESS
James Peach

COLLEGE OF EDUCATION
Nancy Baptiste
Elizabeth Cahill
Karin Wiburg

COLLEGE OF ENGINEERING
James Conca
Shuguang Deng
Abbas Ghassemi
Ricardo Jacquez
Eric Johnson
Andrew Rosenthal

COLLEGE OF HEALTH AND SOCIAL SERVICES
Shelly Bucher

COLLEGE OF EXTENDED LEARNING, AND STUDENT SUCCESS
Carmen Gonzales

NEW MEXICO SPACE GRANT CONSORTIUM
Patricia Hynes

PHYSICAL SCIENCE LABORATORY
Jerry Anderson
J. Allen Baker
Danny Ball
Ray Bernstein
Philip Copeland
Bob Dickenshied
Joanne Esparza
Michael Garcia
Stuart Head
Stephen Hottman
Barry Hudy
Stephen Lowe
Marcos Quinones

DONA ANA COMMUNITY COLLEGE
Sylvia Duran Nickerson
Maria Valencia
John Walker
Impact of the ARRA Funds on NMSU and the State

By Vimal Chaitanya, VPRGI

NMSU researchers have received more than $15.5 million in competitive awards from the American Recovery and Reinvestment Act through NSF, DOE, and NIH. This is about a 10% boost in our yearly research portfolio. The awards will boost NMSU’s research and education activities in alternative energy, life sciences, engineering, agriculture, and health fields, which in turn will impact the economic development opportunities for the State.

For example, our $4.5 Million “Mathematically Connected Communities” project led by Dr. Patrick Morandi from the College of Arts and Sciences, involves educating two cohorts of K-12 teachers, the first including 31 teachers from five school districts in southern New Mexico and the second including teachers from all across the State. Recruiting and retaining students and encouraging them to take up higher studies in science, technology, engineering, and mathematics (STEM) is a priority for the State and indeed a challenge for the Nation. By providing appropriate tools and techniques to the K-12 teachers, this project aims to reverse the tide of declining student interest in the STEM areas. Another project, entitled “Development of an Adaptive Reduced-Gravity Simulator for Aerospace and Biomechanics,” led by Dr. Ou Ma from the college of Engineering, has a multidisciplinary research thrust and involves four NMSU departments. This research aims to develop a unique instrument that will benefit returning wounded veterans with rehabilitation challenges and at the same time promote space commercialization by providing to environment for astronauts, and prompting space commercialization. Dr. Elba Serrano’s project “Systems Biology of Cell Decision Processes” promotes human health through development of therapeutic drugs and identification of chemicals that protect or damage the senses of hearing and balance. Her project aims to build local scientific workforce through new job creation.

One of the most visible ARRA-funded research for NMSU is the National Alliance for Advanced Biofuels and Bioproducts (NAABB) award, a $49 million funding from DOE for developing commercial-scale, algal biofuels industry that is sustainable. The funding will support nine researchers from four Colleges, four post-docs, 11 graduate students, and 17 undergraduate students.

NMSU is also a partner in the $50 million award that Sapphire Energy Inc. garnered from DOE/USDA for developing an integrated biorefinery in Columbus, NM. The impact of a mature algal biofuels industry in New Mexico will dwarf the current impact of the natural oil and gas industry, with estimates of required workforce matching the population of the entire city of Albuquerque. Along with that comes the need to educate and prepare the workforce required to fill the needs of the industry. The needs will have to be addressed not only by the research universities but by the four- year and two-year educational institutions as well.

For potential economic prosperity in New Mexico, I have yet to find anything else that holds the same promise. While the stimulus funding is a one time addition the impact to the State and the community will be long lasting. This is a great opportunity for the educational institutions and the State to get aligned in their vision and goals. The development of research infrastructure, the opportunity it creates for partnership with industries and National Labs, the environment for economic development it creates, and the visibility it builds for the State of New Mexico is unparalleled.

To learn more about NMSU’s ARRA funds please visit http://research.nmsu.edu/arra.
New Mexico Selected by NASA for 2010 Summer of Innovation

By Hamid M. Rad, OSI

New Mexico Space Grant Consortium (NMSGC) is among four consortia partnering with NASA for its Summer of Innovation initiative. This initiative is developed to boost summer learning for students who are underrepresented in science, technology, engineering, and mathematics (STEM). "NASA is partnering with these states in a pilot program to address our nation's critical science, technology, engineering and math education needs," says Charles F. Bolden, NASA Administrator and former astronaut. "Summer of Innovation pairs the strengths of the states with NASA's unique resources to engage more young people and their teachers and inspire and equip them to excel in these critical disciplines."

NASA’s $5.6 million award will support NMSGC and the other three consortia for a period of 36 months to develop methods for engaging participating students in stimulating math and science education programs. The ultimate goal is to increase the number of future scientists and to broaden the participation of low-income and underrepresented minority students.

New Mexico’s portion of the funding is $2 million and is led by Dr. Pat Hynes the director of the NMSGC. She and her colleagues have proposed the Launch and Learn Program, to engage participating middle school teachers and students in designing and building experiments to study science and engineering problems in suborbital space. Students will launch their experiments on a sounding rocket from Spaceport America (the first commercial spaceport in the world located 45 miles north of Las Cruces NM).

In order to obtain more information about this program, we spoke with Dr. Hynes.

Q: Would you please talk about this program and what it entails?

As President Obama aptly stated, “The nation that out-educates us today is going to out-compete us tomorrow.” All of us in the education community are challenged to renew our commitment to creating a nation that knows the way to a vibrant new economy full of opportunity. All of us have a role to play in building an education system that is worthy of our children and ready to help us seize the opportunities and meet the challenges of the 21st century. Despite the importance of STEM education we have to admit that right now we are being out-paced by our competitors. This is what we are called to address in the Summer of Innovation, to create an innovative program that will strengthen NASA and our Nation’s future workforce, attract and retain students into STEM disciplines, and engage students in NASA missions. The Launch and Learn program, will include training of 200 middle school science and mathematics teachers in NASA related STEM content; delivering a summer program for 4,000 middle school students (particularly minority and female students) in an innovative curriculum which will engage and inspire them to continue their education and join the technical workforce; participating in a flight experience where middle school students design, build, and fly an experiment on a sounding rocket from Spaceport America, and; developing an education community of stakeholders and collaborators to provide leadership and continuity.

Q: How will this program impact New Mexico students?

New Mexico ranked 49th in math and 47th in science achievement. Kids Success Counts (2009) lists New Mexico in 51st place, indicating a child born in New Mexico has less chance of success of all children born in the U.S and Puerto Rico.

The New Mexico Summer of Innovation program will offer an academically rigorous program to 4,000 of these students to help them develop skills necessary to succeed in STEM curriculum in high school, leading them into STEM degrees in college and into our technical workforce.

This program will involve 200 highly effective teachers throughout New Mexico. Teachers will be recruited to participate in this program who are from Level II and Level III licensure teachers.

Q: Does this effort involve other partners? If so who are they and what are their roles?

Launch and Learn program is a collaborative effort by NMSGC, NASA’s Science Engineering Mathematics and Aerospace Academy (SEMAA), NM Mathematics, Engineering, Science, Achievement (MESA), and other education providers.

The SEMAA program led by Dr. Susan Brown from the College of Education is a national, innovative project designed to increase participation and retention of historically underrepresented K-12 youth in STEM fields. NASA SEMAA uses a series of unique hands-on, inquiry-based classroom curriculum enhancement activities.
SEMMA serves over 3,500 K-9th grade students each year and has documented through an external evaluation that SEMMA students score higher in science and math on the New Mexico standardized test. These SEMMA experts in curriculum development continually write lessons with the second language learner in mind.

NM MESA is a state-supported statewide pre-college program that prepares students for college majors and careers in mathematics, engineering, science or technically related fields. MESA supports student programs in middle and high schools throughout the state. Each school program is administered by a teacher (typically a math or science teacher) from the school. Through these programs, MESA students participate in a variety of enriched math, science and engineering activities including field trips, speakers, workshops, regional and state-wide academic competitions, community service and leadership development projects.

In addition to the partners mentioned, informal education providers, including museums such as the Explora Science Museum in Albuquerque, the Space Museum in Alamogordo, and several other science museums around the state will provide activities to Summer of Innovation students and teachers. White Sands Test Facility (WSTF) and Jacobs Technology will provide mentoring through the Science Advisor (SCIAD) program. This is an ongoing science advisory program at NASA WSTF and will be a part of the Summer of Innovation School Districts have also agreed to host summer programs on their site for the local teachers and students.

Q: Will this program continue beyond this 36-month project?

We are planning on it. An Advisory Committee will be established to build a sustainable community to support statewide improvements in STEM teaching and learning.

NASA’s other partners in the Summer Innovation initiative are Space Grant Consortia of Idaho, Massachusetts, and Wyoming.

To obtain more information about NMSGC’s Launch and Learn program contact Dr. Hynes at phynes@ad.nmsu.edu. For additional information about NMSU’s SEMMA program, you may contact Dr. Susan Brown at susanbro@nmsu.edu.
NMSU’s Unmanned Aircraft Team recently completed two calibration flights totaling 6.6 hours of AIRDAT Inc.’s Tropospheric Airborne Meteorological Data Reporting (TAMDAR) weather sensor onboard the Physical Science Laboratory’s Aerostar Unmanned Aircraft.

These flights, which took place from Las Cruces Airport to distances of 40 nautical miles, are part of a $522,500 project sponsored by the Air Force Weather Agency in conjunction with the Army Research Laboratory Battlefield Environment Division and AIRDAT Inc. AIRDAT currently has over 150 TAMDAR airborne sensors installed in commercial airliners flying daily into airports throughout North America including Alaska and Mexico. AIRDAT uses the weather information to produce information products for weather-sensitive users. The TAMDAR-U sensor is specifically optimized for unmanned aircraft applications and could be installed on military unmanned aircraft in the future.

“The purpose of this project is to demonstrate that a meteorological sensing system can be sufficiently downsized (in terms of its weight, physical size, and power consumption requirements) that it can be installed and successfully operated on a relatively small Unmanned Aircraft (UA) (such as the Aerostar)” says Terry Jameson, a civilian meteorologist working for the WSMR’s Army Research Laboratory and the research test director for the TAMDAR-U project. Fine-scale Weather Forecast Models (WFM)s are also required measurements from within the atmosphere. Such measurements are called “in-situ” measurements. Up until relatively recently, the only in-situ meteorological measurements available were those taken by weather balloons and by instruments mounted on towers. Weather balloon data is limited since the balloons are typically only launched twice-daily and from very widely-spaced locations. Instruments on towers can take almost constant readings but only for a short distance up into the atmosphere. Aircraft-mounted instruments such as TAMDAR and TAMDAR-U can do both, taking continuous readings and fully covering large areas at multiple altitudes.
into one such WFM. “The second purpose of the TAMDAR-U project is to evaluate to what extent the accuracy of the WFM might be improved by having the benefit of the TAMDAR-U data,” adds Mr. Jameson.

"Weather-sensitive" users include the aviation industry (military, commercial, and general aviation) as well as industries such as agriculture, transportation (besides aviation), forestry etc. Also, most all types of military operations on the battlefield are greatly affected by weather conditions. Instruments such as TAMDAR/TAMDAR-U promise to improve the accuracy of meteorological forecast models, which in turn would result in more precise forecast availability for anyone interested in weather that might affect their planned activities.

The NMSU Unmanned Aircraft Team plans to continue research flights to provide weather data to the Battlefield Environment Division of the Army Research Laboratory at White Sands Missile Range.

At NMSU’s Physical Sciences Laboratory, Mr. Forrest Carpenter oversees the planning, coordination, and execution of the flights. During the flights, he also serves as the Pilot-In-Command (PIC) of the unmanned aircraft. For additional information about this project please contact Mr. Carpenter at 575-646-9585 or via email at fcarpenter@psl.nmsu.edu.

Mick O'Neill, Associate Professor of Agronomy, Recipient of Jose Fernandez Memorial Chair Award

Dr. Mick O’Neill, Associate Professor of Agronomy in NMSU’s College of Agricultural, Consumer and Environmental Sciences, was awarded the Jose Fernandez Memorial Chair in Crop Production for his outstanding efforts in crop research. In this ceremony, in which Dr. O’Neill’s colleagues and family attended, Dr. Jay Jordan Interim Executive VP and Provost presented Dr. O’Neill with this prestigious award.

As the former superintendent of the Agricultural Science Center at Farmington, Dr. O’Neill oversaw the operation of this branch of NMSU for 10 years in Farmington that serves the agricultural needs for large and small scale producers in the San Juan River basin of northwest New Mexico and the Four Corners. Currently, Dr. O’Neill is devoting his research interests to the adaptation of hybrid poplar to arid/semi-arid environments, characteristic of much of the western United States Intermountain Region. He is also focusing on the sustainable development of biofuel crops including poplar for cellulosic ethanol production and oilseed crops for biodiesel.

Before joining NMSU in 1999, Dr. O’Neill spent 10 years in Kenya, Africa, working in soil and water conservation, the development of fodder trees/shrubs for small holder dairy animals, and improvement of fruit trees with the International Centre for Research in Agroforestry (ICRAF). In 2009 he spent six months in Kenya and Rwanda to develop crop water use evaluations for the Rwandan Irrigation Master Plan.

Dr. O’Neill has published more than 46 peer-reviewed articles and technical reports. He holds a M.S. in soil and Water Science and a Ph.D. in Agronomy and Plant Genetics from the University of Arizona.

Dr. O’Neill’s contribution to NMSU and the agricultural community.

Dr. O’Neill can be reached at moneill@nmsu.edu.
Meet Gloricelys Rivera NMSU's Biology Ph.D. Candidate from San Juan, Puerto Rico

By Hamid M. Rad, OSI

It has been a great opportunity to be a MBRS-RISE fellow. It was definitely my destiny to be here at NMSU!

Gloricelys Rivera is a doctoral candidate at NMSU’s Department of Biology. She was born and raised in San Juan Puerto Rico and after receiving her BS degree in Cell and Molecular Biology (magna cum laude) from Universidad Metropolitana joined NMSU in 2005 to pursue a PhD in Biology. Below we have a conversation with her about her work and experiences at NMSU and her future plans:

Q. How did you become interested in Biology?
I have always been passionate about life. Every prairie bird, drop of dew and grain of sand is unique to nature. Most life is microscopic and many important discoveries have been made thanks to research in molecular biology and the emerging field of biotechnology. I truly believe that becoming a scientist is one of the most rewarding goals one can pursue. Scientific research helps to enrich the quality of life for human beings.

Q. You went to school at Puerto Rico’s Universidad Metropolitana (UMET) for your undergraduate studies. Can you tell us about that?
During my undergraduate years, I was awarded a Model Institutions for Excellence (MIE) scholarship from the National Science Foundation (NSF). The purpose of this scholarship is to promote research activities early in the career of future scientists.

In the summer of 2002, I went to the University of California, Los Angeles (UCLA) to perform a research entitled Mapping and Gene Expression of Human Brain Tissue by Real-Time (QRT-PCR). We were looking for the tridimensional gene expression patterns in the human brain using a new method called voxelation. During the following summer, I stayed in Puerto Rico and assisted a professor in a project entitled Cell Cycle Checkpoints and Galactosemic Lens Epithelial Cells. The goal of that project was to determine if the aberrant cell cycle progression exhibited by 40mM galactose-treated lens epithelial cells in culture is a consequence of a checkpoint arrest at the G2/M stage.

In summer of 2004, after receiving a minority undergraduate research fellowship from the American Society for Microbiology (ASM), I participated in an internship at Massachusetts Institute of Technology (MIT). That project, entitled EMS Mutagenesis of S. cerevisiae to Identify Genes Involved in Gap1p Regulation, focused on the identification of genes involved in the protein trafficking of Saccharomyces cerevisiae.

All of my experiences as an undergraduate student at UMET encouraged me to pursue graduate studies in Biology. As part of my training to pursue a graduate career, I was recommended by faculty to tutor classes such as Genetics and Molecular Biology.

Q. How did you choose NMSU for your graduate studies?
In 2003, NMSU’s recruitment team in Puerto Rico visited UMET. I was a sophomore at that time. After spending three summers in laboratories, I decided to apply for graduate school. What attracted me most to the Biology graduate program here at NMSU was the interdisciplinary approach used in the department to conduct research. In contrast to other schools that I was considering, NMSU Biology graduate students, with the approval of their committee and advisor, are able to tailor their course selection towards their degree and career goals. This feature allows students to explore new topics and develop a sense of independence. Finally, the fervent dedication and commitment from my advisor, Dr. Angus L. Dawe to bringing me here was crucial to my final decision. I will never regret that important step in my life.

Q. Has the department had the equipment to support your research?
Yes. A NSF grant, partial funds from Howard Hughes Medical Institute (HHMI) and the Minority Biomedical Research Support-Research Initiative in Science Enhancement (MBRS-RISE) fellowship currently fund our laboratory.

Q. Would you talk about the Biology Department faculty, especially your advisor, Dr. Angus Dawe?
They are all great. Every single professor that taught my graduate courses has left a footprint in my professional life. My advisor is a great scientist. I admire his patience and integral human values.
Q. You seem to have unique research interests, Biological clock in plant-fungal and virus-host interactions. Tell us why they are important.

I am pursuing a doctoral degree in Biology with a focus on understanding daily biological rhythms that are generated internally in fungi. Our model system is a plant pathogen named Cryphonectria parasitica, which infects the American chestnut tree causing the chestnut blight disease. The fungus can be infected with a virus that decreases its pathogenicity in the tree. An RNA virus attacks C. parasitica causing a reduction in the ability to cause damage to the tree, a phenomenon called hypovirulence. The fungus exhibits phenotypical changes including pigmentation and sporulation reduction when infected by the virus. However, once the hypovirulent strain is exposed to constant light, the pigmentation of the fungus intensifies.

Preliminary results have identified 506 putative orthologue genes that are regulated directly or indirectly by the biological clock in C. parasitica. Seven of these genes are known to be central clock components in Neurospora crassa, an important model system in the field of chronobiology. We have used clock genes sequences of N. crassa to map potential light-response pathway genes of C. parasitica within the genome. At this time, we are interested in identifying 20% of the genes involved in circadian rhythms from a total of 11,000 genes in the genome of C. parasitica.

The study of circadian rhythms in C. parasitica and the particularity of its viral infection resulting in disease reduction will help us to design variants for biological control in plant pathogens. This is imperative because the main food source for many countries comes from plants that are frequently infected by these organisms. Identification of light/response genes in C. parasitica will help us understand whether circadian rhythms are related to fungal pathogenicity. In addition, this important data have contributed to the genome sequence project of C. parasitica, supported by the Joint Genome Institute of the US Department of Energy which will be published in the summer of 2010.

The biomedical focus of this project is relevant to the regulation of the sleep-wake cycle. Our research is helping us understand how fungi anticipate changes in the environment and adjust to them. Several of the genes that we have identified in C. parasitica are orthologues of human circadian clock genes. Alterations in light and temperature can interrupt the stability of a person’s sleep. Sleep disruption can adversely affect job performance and consequently create permanent psychological and physiological disorders. This research will increase our knowledge of light-signal transduction pathways and circadian rhythms, which are largely unknown. It will also help us understand how biological clock is entrained in order to execute daily tasks.

Q. Did you receive any scholarships or awards while at NMSU?

Yes, with the help of several faculty in our department, I received an award from Puerto Rico Industrial Development Company (PRIDCO) and another one from Society for Advancement of Chicanos and Native Americans in Science (SACNAS), which aims to encourage underrepresented students to obtain science and engineering degrees. They have an annual national conference and provide travel scholarships to students with high academic success. I also received a Graduate Research Award from the Graduate Student Council at NMSU that provided much needed financial support for my research. Finally, the Minority Biomedical Research Support-Research Initiative for Scientific Enhancement (MBRS-RISE) fellowship was awarded to me as part of my graduate school admission.

Q. Can you talk about the MBRS-RISE program? How did you get that scholarship? How did it help you?

The MBRS-RISE Program is intended for students interested in pursuing professional careers as scientists. It provides undergraduate and graduate students with financial support for career development as well as research experience in laboratories. Graduate participants receive a fellowship while they complete their doctoral program. To be accepted for this award a faculty member needs to write a proposal containing a five-year training plan for the prospective student. This program
The New Mexico State University Model United Nations Team received the top awards of Outstanding Delegation, Outstanding Position Paper and Outstanding Delegates in Committee for representing Switzerland last week at the National Model United Nations Conference (NMUN) held at the Marriott Marquis in New York.

More than 340 schools participated in the 2010 NMUN Conference (both Sheraton and Marriott venues), with almost 40% of attending students coming from international universities. About 2500 students participated at the NMUN Marriott Conference and represented UN Member States in over 20 committees -- from the General Assembly Plenary to the World Health Organization.

The NMUN Conference began Tuesday, March 29, 2010 with an opening ceremony that included guest speakers, Ms. Susan E. Rice, Permanent Representative of the U.S. to the UN, and Kiyotaka Akasaka, Under-Secretary-General for Communications and Public Information and was completed with a closing ceremony and award recognition on Saturday, April 3, 2010. The NMSU Model UN delegates participated in an intense five-day schedule which included a visit to the Swiss Embassy, several presentations on international topics, committee trainings and eight committee sessions.

Two NMSU Model UN delegates, Owen Cortner and Caraline Murphy, received the distinguished honor of chairing their respective committees, the World Food Programme and the General Assembly First Committee; and delegate Casey O’Neill, received the distinguished honor of serving as rapporteur to the Economic and Social Council Plenary. The committee chairs facilitate the procedural running of the committee and the rapporteurs facilitate with the paper flow and organization of the committee.

The Model UN delegation awards are determined by set criteria based upon performance in each committee session. The areas of evaluation consist of remaining “in character”, committee participation, and proper use of procedure. Position Paper awards are determined by considering the quality of writing, citation of relevant resolutions/documents, general consistency with regional blocs, consistency with constraints of UN, and proper analysis of issues. Consistently, the NMSU Model UN team has demonstrated excellence in both its representation of its assigned countries views during committee as well as in its ability to clearly articulate the topics being discussed and evaluated at the UN. The NMSU Model UN team has won Outstanding Delegation and Outstanding Position Paper awards for the past three years. In 2007, NMSU student, Orlando Arellano won outstanding delegate in his committee, and this year, delegates Zack Quintero...
and John Martinez, both freshmen, won outstanding delegation for representing Switzerland in the General Assembly Plenary.

The NMSU Model United Nations team is already beginning preliminary preparations for next year’s team, and hopes to garner increased support from both the local and international community. The Third Annual Night at the UN banquet hopes to be a greater success than the previous years. No date or venue has yet been set.

“I have been most impressed with the diligence and commitment of the Model UN students” says Delano E. Lewis, Founding Director of NMSU’s International Relations Institute. “They work extremely hard as a team, with in-depth research on the countries and the issues. They have garnered prestigious awards as a delegation, and their position papers are rated outstanding. The Model UN Team is a sterling example of student leadership and achievement at NMSU.”

If you are interested in learning more about the NMSU Model United Nations team or are interested in donating, please contact NMSU MUN President, Andrea Peterson, at andreag@nmsu.edu.

Q. Can you talk about your scholarship with PRIDCO?

The government of Puerto Rico has developed new strategies to attract companies in the biosciences to invest in the island. In order to have well-trained professionals work for these companies, PRIDCO has developed a scholarship program to support talented youth. The scholarship offers a small stipend to graduate students in scientific and industrial fields and provides them with the opportunity to return and work in the island for the period of time they were awarded. It is a prestigious award that the governor of the island presents to a few students every year.

Q. What are your future employment plans?

I need to work for the funds granted to me by the Puerto Rican government to study here at NMSU. Thus, I have been communicating with some professors and industrial companies for job opportunities. I hope to have a final answer soon.

Q. What is your message to future students who might be interested in pursuing graduate degrees at NMSU?

Never give up! Graduate school is challenging but not impossible! My recommendation to every applicant is to plan a timeline of their long-term goals. Prepare a list of priorities especially if you are the head of a family. Be confident. Never ever doubt your talents!

Gloricelys Rivera can be reached at glorivel@nmsu.edu.
NMSU Research News is a bimonthly newsletter published by the Office of the Vice President for Research, Graduate Studies, and International Programs. Comments are always appreciated. Please submit your research-related news or announcements online at

http://research.nmsu.edu/news

For additional information about this newsletter or to request hard copies, please contact Hamid M. Rad at (575) 646-6429 or via email at hamid@nmsu.edu