VPR Office Supports the Year of Sustainability, 2

Studying Water Availability in N.M., 9

NMSU’s 2008 Research Awards Exceed $165M

February 2009

Book: Battle for the Castle: NMSU Associate Professor, Andrea Orzoff Studies Political Spin

NMSU Honors Top “Millionaire” Researchers

Winners of the 2009 Interdisciplinary Grants Announced

NMSU Researchers Sam Fernald and Al Rango Study Water Availability in N.M. Announced

Please submit research-related news online at http://research.nmsu.edu/news
In support of President Cruzado’s call for Year of Sustainability at NMSU, the Office of the Vice President for Research is pleased to announce an internal award of $50,000 towards the development of a techno-economic model for algal biofuel industry using a systems dynamics approach. This interdisciplinary research will be conducted by Luz-Elena Mimbela of the Institute for Energy and Environment (IEE), College of Engineering, and Meghan Starbuck of the Department of Economics, College of Business.

Southern New Mexico is increasingly attracting investors, developers, and researchers interested in commercial-scale production of algal energy. Availability of non-agricultural land, abundance of sunlight, and plentitude of brackish water are some of the driving factors behind this interest. However, important process, economic, and policy considerations, in addition to biological/technical aspects of production, will determine if algae will represent a new "biocrude" substrate to fuel future economic growth. "Is it technically and economically feasible to use algae as a large-scale fuel source?" ask Mimbela and Starbuck. This is a question that they are trying to answer by building the techno-economic model as outlined at the U.S. Department of Energy (DOE) -hosted Algal Biofuels Workshop held in Washington, DC in December 2008. Starbuck and Pete Lammers from the Department of Chemistry and Biochemistry played a significant role in the conference, contributing information to the roadmap development of an algal biofuel industry in the U.S. It is expected that the findings will assist U.S. DOE Biomass Program of the Energy Efficiency and Renewable Energy (EERE) group to help guide research expenditures related to algal biofuels.

Mimbela and Starbuck were awarded the $50,000 grant for a proposal submitted to the interdisciplinary research grants (IRG) competition for 2009. In addition to working with other NMSU researchers engaged in biofuels research, Mimbela and Starbuck will collaborate with Sandia National Laboratories, National Renewable Energy Laboratory, Sapphire Energy, and Center of Excellence for Hazardous Materials Management (CEHMM). "The proposal could not have come at a better time. The answer to the question they have raised will have a profound impact on the future of algal fuel sustainability", says Vimal Chaitanya, Vice President for Research and Graduate Studies at NMSU.
Faculty and staff at NMSU whose research projects deposited funding of $1 million or more during the 2007-2008 fiscal year were honored this month. Also honored were researchers who came close to logging $1 million during the fiscal year. The plaques and certificates were awarded by NMSU Interim Executive Vice President and Provost Bob Moulton on behalf of interim President Waded Cruzado and Vimal Chaitanya, NMSU's Vice President for Research, Graduate Studies and International Programs.

A special reception took place February 13, 2009 at the Stan Fulton Athletic Center to recognize the efforts of 36 researchers in five academic colleges, the College of Extended Learning, Physical Science Laboratory, New Mexico Department of Agriculture, and NMSU's Dona Ana and Carlsbad Community Colleges. NMSU researchers brought in $166 million in contracts and grants, an all-time high, for the fiscal year 2008, nearly 62% of which was brought in by the researchers who were recognized at the special reception.

Recipients of NMSU’s 2008 Millionaire Researcher Awards are:

College of Agriculture
- Leroy A. Daugherty
- Martha F. Archuleta
- Barbara Chamberlin
- Terry Crawford
- Ester L. Devall

- Robert Silver
- Carolyn K. Vander Giesen
- Mary O’Connell
- Debra Peters

College of Arts and Sciences
- Kurt S. Anderson
- Jeffrey B. Arterburn
Elba Serrano
Desh Ranjan
Michael Johnson
Gary Eiceman

College of Education
Karin Wiburg
Nancy E. Baptiste
Cathy J. Kinzer

College of Engineering
James L. Conca
Abbas Ghassemi
Ricardo B. Jacquez
Andrew L. Rosenthal
Nirmala Khandan (For 2006-2007)
Kenneth White (For 2006-2007)

College of Health and Social Services
Stephen C. Anderson

New Mexico Department of Agriculture
Bonnie M. Rabe

Physical Science Laboratory
John A. Baker
Joanne M. Esparza
Stephen B. Hottman
Stephen R. Lowe
Marcos R. Quinones
Stuart Head

Research and Development Category	**Number of Institutions Ranked**	**FY06 Rank**
Total R&D among All Institutions | 200 | 99
Total R&D among All Institutions without a Medical School | 517 | 28
Total R&D among Public Institutions | 150 | 69
Federal R&D among Public Institutions | 150 | 86
Total R&D Expenditures in Engineering | 100 | 14

NMSU’s substantial research funding and credentials are illustrated by the most recent rankings assigned by the National Science Foundation (NSF).
Research at NMSU is thriving and growing. In FY2008, research awards exceeded $165 million. This success also results in additional dividends: the ability to recruit and retain high-caliber faculty and students and enhancement of the quality of the undergraduate and graduate educational experience. NMSU’s growth and success in funded research is illustrated by the continual increase in awards annually. From FY 2005 to FY 2008, NMSU’s award dollars increased by 27.97%. The pie chart shows the major agencies from which NMSU receives funding and the percent value of the funding. NMSU receives approximately 86% of its funding from the federal government, with the Department of Health and Social Services and National Aeronautics and Space Administration being the top sponsors. The State of New Mexico and industry also provide significant funding.
The VPR office is pleased to announce the 2009 Interdisciplinary Research Grant (IRG) awards. This year thirty outstanding proposals were received, making it extremely competitive. The review panel, consisting of NMSU researchers, research deans, and OVPR personnel evaluated the proposals based on the following criteria:

1) Technical merit of the proposed research

2) Potential impact of the proposed research on the University’s research programs and national visibility

3) Potential for future funding and sustainability. After reviewing all the proposals, the panel members ranked them and recommended projects for funding.

Winners of 2009 Interdisciplinary Research Grants
Perceptual Audio Quality Evaluation by Direct Measurement of Human Brain Responses

PI: Charles Creusere, Klipsch School of Electrical and Computer Engineering Co-PI: Jim Kroger, Department of Psychology

Audio signal compression and transmission often causes noticeable distortions that degrade the quality of a signal and, consequently, subjective testing is generally conducted to analyze and optimize the performance of different compression algorithms. Most of the subjective testing methodologies such as the MUSHRA standard as recommended by the International Telecommunications Union (ITU) [1] only assign quality ratings to entire audio sequences. For applications where the signal content and the communications channel are assumed to be statistically stationary, this is theoretically sufficient. Unfortunately, in most real-life implementations, both the content (e.g., the audio being transmitted) and the quality of the communications channel vary with time, making the entire scenario highly non-stationary.

The fundamental goal of the research proposed here is to find a more accurate and ultimately less time-consuming method for subjectively evaluating dynamic (i.e., time-varying) audio quality. With the data gathered using such a method, one could develop more accurate objective (computer-based) quality metrics which could then be used for real-time compression and transmission system optimization in applications ranging from cellular phone networks to web-based audio transmission. Our idea for developing such a system is based on an old-fashioned business concept cutting out the middleman. Basically, we plan to investigate whether or not we can quantify the human perception of audio quality by directly analyzing human brain responses. Specifically, we will present audio sequences with various forms and levels of degradation to our human test subjects while monitoring their brainwave responses using a 128-channel electroencephalograph (EEG). Once developed and validated, such an approach will allow us to measure changes in perceived signal quality with higher temporal accuracy and to use fewer test subjects since we eliminate the uncertainty in how test subjects interpret the ratings methodology.

A Systems Dynamics Approach to Modeling an Algal Biofuel Industry: A Techno-Economic Model

Most of the research conducted to date has centered on the biological/technical barriers to creating a new “biocrude” and its derivative products. However, there are important process, economic, and policy considerations in combination with the biological/technical aspects of production that will determine if algae represent a new “biocrude” substrate to fuel future economic growth. The question becomes, is it technically and economically feasible to use algae as a large-scale fuel source? This research seeks to build the first stages of a dynamic model of algal energy in New Mexico. The technical data used to build the model will come from research partners at New Mexico State University, Sandia National Laboratories, Sapphire Energy, CEHMM, National Renewable Energy Laboratory and other technical partners. This research has two primary goals: (1) build the first stages of a model so that NMSU is competitive in the search for renewable energy research funds; and (2) strengthen the collaborative, inter-institute and industrial partnerships required for large proposal bids.

Designing an Effective “Real-Time” Methodology to Evaluate Circadian Rhythm in Cultured Breast Cell Lines

PI: Aaron Rowland, Department of Chemistry and Biochemistry; Co-PI: Desh Ranjan, Department of Computer Science

The primary goal of this study is to integrate biological and computational analysis of circadian rhythm pathways using real-time luminescence in human cell culture. Once established, this versatile technology will provide an opportunity for scientists to monitor transcriptional activity within their favorite pathway in real-time. This seminal study examines the role peripheral circadian rhythms in breast cancer.

The PI’s hypothesize that by establishing effective scientific and computational methodology for real-time monitoring and analysis of peripheral circadian rhythm in breast cultures, they will be able to discriminate between breast cancer cell lines displaying normal or altered circadian...
rhythms and evaluate the impact of chemical and genetic perturbations on these rhythms. Their research goals will be realized through the successful accomplishment of three specific aims: Aim 1) develop the molecular tools required to monitor circadian rhythm pathways in real-time in human breast cell lines; Aim 2) develop the database and computational capacity to handle and high-throughput studies and assess potentially important variations in peripheral circadian rhythm, and Aim 3) evaluate circadian rhythm pathways in established breast cancer cell lines.

Automated Image Analysis of Calorimeter Data for Determination of Particle Identity and Energy

PI: Steve Stochaj, Klipsch School of Electrical & Computer Engineering
Co-PIs: Laura Boucheron, Klipsch School of Electrical and Computer Engineering; Thomas Harrison, Department of Astronomy

This project aims to apply newly developed automated image processing techniques to the analysis of imaging calorimeter data taken with instruments for high-energy, particle astrophysics. Over the past year, particle astrophysics has received a great deal of attention due to two surprising measurements that may have a profound impact on our understanding of dark matter. The nature of dark matter is the most fundamental question currently at the forefront of physics, astronomy and cosmology. NASA’s Advanced Thin Ionization Calorimeter (ATIC) and the PAMELA experiment have reported an excess of electrons and positrons, respectively, in the cosmic radiation. These signals could represent evidence for the decay of dark matter particles within our galaxy. The Fermi Gamma-ray Space Telescope, launched in June 2008, and the upcoming Japanese CALET and NASA’s Orbiting Astrophysical Spectrometer in Space (OASIS) missions hope to further investigate the dark matter mystery. All of these instruments use imaging calorimeters to measure both the energy and identity of the incident particles. This project will focus on developing an improved methodology for determining the energy and identity of particle from their signals in imaging calorimeters. The work will include faculty members from Electrical Engineering and Astronomy and is closely aligned with the goals of the 21st Century Aerospace Cluster.

Are Associated with Malaria Susceptibility Using Generalized Logical Network Modeling Based Statistics

PI: John Xu, Department of Biology; Co-PI: Joe Song, Department of Computer Science

Malaria is a mosquito borne disease that causes more than 300 million cases each year resulting in over one million deaths. Understanding mosquito-malaria interactions will help to develop a strategy to disrupt parasite development in the mosquito vector and thus alleviate malaria transmission. The vector competence is determined by the mosquito susceptibility to malaria, which is a result of the complex interactions between the malaria parasites and mosquitoes. Throughout the co-evolution with malaria, mosquitoes have evolved a genetic architecture that encodes effective defense programs against malaria. The anti-malaria immunity is a network composed of recognition, signal transduction and effectors. Previous work has shown that the efficiency of the network varies among different individuals in a population, which results in resistant and susceptible phenotypes. It is of great interest to identify genetic variants that determine the resistance/susceptibility. In this project the PI’s will explore genetic variation in immune signaling genes and use SNP based association study to uncover the variants that underline the susceptibility to malaria. For such a complex multi-factorial trait, it is a challenge to detect variants with a minor or modest effect size, or variants having effects only when interacting with other variants (gene x gene interactions). Most current statistical approaches for genome-wide association are based on single SNP analysis, which have substantial risks of missing association signals. The PI’s goal is to detect effects of SNP x SNP interactions that contribute to the quantitative trait of malaria susceptibility. Towards this goal, they have two objectives:

1. To target immune signaling genes to identify variants that are associated with mosquito susceptibility/resistance to malaria for SNP-based genetic association studies.
2. To detect whether one or multiple SNPs are statistically associated with a given phenotype using the generalized logical network modeling approach.

Exploring SNPs in Mosquito Immune Genes That
Studying the Water Availability in New Mexico

By Hamid M. Rad

NMSU’s College of Agriculture researchers Al Rango and Sam Fernald study the impact of climate change on water supplies in NM.

This project, which is funded by a New Mexico-wide EPSCoR grant, involves researchers from NMSU, University of New Mexico, New Mexico Tech and other New Mexico institutions.

Mountainous regions of northern New Mexico and Colorado are the source of water in New Mexico. The amount of precipitation, temperature and water evaporation affect water supply in southern regions of the state, according to Al Rango, NMSU’s research hydrologist with the College of Agricultural Consumer and Environmental Sciences.

During this project that started in January 2009, the research teams are studying the effects of climate change on the future of NM water supply and develop an infrastructure essential for future researchers who want to further study this critical issue. Each team has a unique role, and NMSU will develop hydrologic models that can predict the future of NM water supply based on the data collected during the five-year project. This model requires satellite images that show snow covered areas, the Rio Grande basins and irrigated areas and desert lands. It also requires installing new instruments all over the areas being studied.

During this project Sam Fernald, Associate Professor at the College of Agriculture will study the effectiveness of acequias, traditional ditch irrigation systems that distribute the snowmelt runoff to irrigated areas.

The outcomes of this project will help policy makers understand the limitations of water supply in NM, which is becoming challenged by the increasing numbers of people moving here from outside the state.

Photo: Courtesy of Carlos Ochoa, Animal and Range Sciences Department
A graduate research assistant at New Mexico State University won first place recently at a national conference for her research into how salinity can affect moisture readings in soils. Elena Sevostianova, with the Department of Plant and Environmental Sciences, won for her poster presentation in the turf grass category on the “Accuracy of Moisture Sensors in Saline Soils” at the recent National Agronomy Meeting in Houston, Texas. Bernd Leinauer, a specialist in Extension Plant Sciences, Manoj K. Shukla, an assistant professor in the Department of Plant and Environmental Sciences, and Bernd Maier, a viticulturist specialist with Extension Plant Services, assisted Sevostianova on the project.

“Although her poster and work was awarded because of the potential to have an immediate beneficial impact on the turf industry, the work reaches much further than only the turf industry. These sensors can be used also in agriculture where saline groundwater is used for irrigation and salt accumulation needs to be monitored to ensure a healthy crop,” said Leinauer.

For the project, a study was conducted at the university to compare the accuracy of five soil moisture sensors at a wide range of salinity in two types of soils. The study was funded through the Rio Grande Basin Initiative and through a grant from the Water Resources Research Institute. The objective of the yearlong project was to determine if salinity affects moisture readings of soil sensors in two different types of soil. The researchers tried to determine the salinity threshold at which the sensors failed to measure the moisture accurately. In the experiment, the soil sensors accurately measured moisture in loamy, or fertile, sand and silt loam soil at salinity levels ranging between 3 and 24 deciSiemens per meter, the measurement used to determine soil salinity. However, all of the sensors needed salinity-specific calibration. It was found that some sensors could also be used to determine soil bulk electrical conductivity. Sevostianova said she was happy for her win and that her hard work paid off.

“It’s definitely well-deserved. She worked hard,” Leinauer said. “That’s definitely something the poster doesn’t show.”

Sevostianova is not the first graduate to receive first place at the national competition. Previous winners were Casey Johnson and Yoshiaki Ikemura for their presentations on “Turf grass Establishment with Saline Groundwater” and “Spectroradiometry and Digital Image Analysis of Drought and Salinity Stressed Turf grasses,” respectively.

Sevostianova received a $300 prize for her winning poster presentation. Of about 260 presentations, 50 percent were poster presentations. The winning research was all done in a lab. The next step, Sevostianova said, is to now take the experiment out into the field. The outdoor experiments will use two of the five sensors that were found to give the most accurate results, the Acclima and the Turfguard sensor. Sevostianova said they will use the two types of sensors to monitor moisture and salinity at three different soil depths to see how far down the salinity penetrates.
Dr. Andrea Orzoff, an associate professor in the history department, has always been fascinated by PR. As an undergraduate at Northwestern's Medill School of Journalism, she found herself contemplating not just how to write for a newspaper but the conflicts and contradictions of newspaper work as it related to politics. Now, her first book, Battle for the Castle, explores this long-standing interest in the context of crisis-ridden, insecure Europe between the First and Second World Wars.

Q&A

Please tell us a little about yourself, where you grew up, how you became interested in history, your college, etc.

I grew up in the northern suburbs of Chicago, and wasn't all that interested in history until my undergraduate years at Northwestern University. The history department there is extremely good --wonderful teachers as well as scholars. I became especially close to Peter Hayes, who teaches German and Holocaust history. I didn't major in history, as I'd begun in Northwestern's journalism program and it was too complicated to change majors by the time I discovered the history department. But, as it turns out, that was all for the best. My time in journalism school very much influenced my intellectual interests and scholarship -- especially the book I've just finished. I did my graduate work at Stanford. The book is somewhat related to my dissertation, but it's about 75% new research and writing.

When did you join NMSU?

I taught part-time between 1999 and 2001, and then became a college-track assistant professor in 2001. I was hired onto the tenure track in 2002.

What courses do you teach?

My most popular courses are Modern Germany and History of the Holocaust. But I teach a wide range of courses. Some examples: The European City; Nationalism, Ethnic Cleansing and Genocide; Twentieth-Century Europe; The First World War (co-taught with Dr. Nathan Brooks); Modern Eastern Europe; European Intellectual and Cultural History. I've also co-taught a graduate seminar on borders and border theory with other faculty in the history department.

Congratulations on your book. What made you decide to write this book?

Thank you! The book is about political mythology -- the stories we tell ourselves about our collective pasts and futures -- about national identity, and about political spin. I follow politics (European and American) passionately, so this book is a natural outgrowth of a deep interest of mine. I'm also very interested in the history of the media, and the media were very important for propagating these ideas and arguments.

Why did you choose Czechoslovakia?

After 1989, Eastern Europe desperately needed English teachers. I graduated college in 1991 and wanted to go to Europe, and heard about a program through Georgetown University called Students for Czechoslovakia. They promised that if I got myself to Prague, they'd house me and find me a job. It felt like a real gamble: I'd never really left Chicago before, much less the United States! But they were waiting for me when the plane landed, as they'd promised. I spent about a month in Prague, learning some rudimentary Czech, and then went to Brno for a year, where I lived with a family that spoke no English. Desperation is a very effective
motivator for learning a language. I left in early summer 1992, planning to go back for the next academic year, but became ill unexpectedly and couldn’t travel. So I had to put off my return until the summer of 1994, when I came back as a Stanford graduate student. All in all, I’ve spent about 4 years in Czechoslovakia/the Czech Republic. I know the language, I have friends and adopted family there, and I’ve been immersed in its history and culture for a long while now.

How do the people in Czechoslovakia characterize Tomáš Masaryk, their first president? A liberator or an opportunist?

Masaryk is Czechoslovakia’s George Washington, and like Washington, there’s as much mythology surrounding him as there is history. It’s made worse by the Cold War: archives were closed, modern topics were politically very sensitive, and Masaryk especially was persona non grata, so historians didn’t do much real research on him or his time period. There’s been an explosion of work about him since ’89 and the fall of the Berlin Wall, as you might expect. A lot of that is hagiography. So it’s complicated.

The real answer to your question, of course, is that he was both. When he was alive, he worked actively to promote a myth of himself as a benign figurehead, a philosopher-president. But in truth, he was an active, savvy politician; he knew everyone, he had spies and informants everywhere, and he had a lot of money (both private and official funds) to use to acquire knowledge about his opponents. He was also well aware that he was a handsome, charismatic older man -- the combination of his wartime work abroad for the country and his august age was politically unbeatable. He sat for portrait after portrait, photograph after photograph, rode his horse in countless military parades: he was very much a part of crafting a leader-cult for himself as president. The cult added to his actual political power. So the legend -- Masaryk as liberator -- made him more successful as a tough politician.

‘There are many forms of democracy, and they’re all equally fragile.’

Why should Americans — and New Mexicans — interest themselves much in Czechoslovakia? It’s a small country, far away, without much real economic or military power.
For the same reason that Americans in New York, or LA, ought to be interested in New Mexico: you learn a lot about the mainstream when you're looking at it from what's generally considered to be the margin. Also, Czechoslovakia between 1918 and 1948 was the canary in the European coal mine. After World War I, the Great Powers (Britain, France, and to a lesser degree the US) set up a system of peace treaties intended to redraw national borders, control aggressive states and make leaders treat their people decently. Czechoslovakia was created by these treaties and depended on the system they created. So you could say it was at the heart of the postwar peace. When Hitler started to ignore the treaties, and the West turned a blind eye, Czechoslovakia was doomed. Its history tells us a lot about European history between the two World Wars: in this case, the part speaks for the whole.

I understand you presented this book at Yale, at Columbia, and at a conference in DC sponsored by Czech Embassy. That's so exciting. Can you tell us a little about your presentations? How was your audience? Did you encounter any challenging opinions?

These were really exciting opportunities. I've also presented the book at the Woodrow Wilson Center for International Affairs in Washington. I'm always challenged, mainly by older Czech émigrés who don't like hearing Masaryk presented as a real person rather than a saint. Some professors at the Yale talk disagreed with my use of the term "political myth," which helped me refine my ideas.

What do you hope your readers take away from reading this book?

That there are many forms of democracy, and they're all equally fragile. Part of the Czechoslovak national myth I discuss in my book was an insistence that the people of Czechoslovakia were "native democrats" -- more Western and tolerant than the West itself. But Masaryk and his close colleague Edvard Beneš insisted that whatever they did was in defense of democracy, even as they governed in increasingly autocratic ways or dismissed the complaints of the country's German-speaking minority.

Also, and this is obvious, that all politicians use spin and propaganda. We tend to use propaganda as an epithet: it's what the bad guys do. But for Masaryk and Beneš, and the leaders of most other European states, it was an important, necessary tool of statecraft, more akin to political education than to brainwashing as we now see it. All political messages are spun; we, as citizens, should always be a bit skeptical, even when the messages are coming from leaders we like.

Are you planning on writing another book?

Yes. My next book is about the Central European chapters of the International P.E.N. Club. PEN is affiliated with the United Nations; it was intended to be an elegant supper club for intellectuals, and a way for writers to unite around issues of free speech and propagation of ideas. Instead, it became immediately political. I'm focusing on the years between 1945 and 1975, and am going to look at the PEN chapters in West and East Germany, Austria, Czechoslovakia, and Poland as a way of examining European cultural politics during the Cold War.

Other than teaching, are you involved in other activities?

Yes. I have organized a public forum comparing President Obama to Franklin D. Roosevelt, regarding both their policies and styles in dealing with economic crisis. The forum will be held at 7 p.m. Thursday, March 5, in the Gerald Thomas auditorium.

Why do you think this discussion is important?

Many commentators have compared President Obama to Roosevelt. I thought it would be interesting to have a community-wide discussion. I also think that to make sense of present issues we need to understand the past.

Who are the major NMSU professors in this panel?

Jamie Bronstein, Jon Hunner, and Dwight Pitcaithley from the Department of History; Regents Professors Nancy Baker, who is also the head of the Department of Government, and Jim Peach from the Department of Economics and International Business.

Dr. Orzoff can be reached at aorzoff@nmsu.edu.
One of the functions of the Office of Strategic Initiatives (OSI) is to assist faculty staff in developing competitive grant proposal writing skills through workshops that focus on various aspects of grant writing and funding search processes.

On February 20th, in cooperation with NMSU’s Teaching Academy, OSI conducted a two-hour session focusing on funding search techniques and grant writing basics to a group of 40 participants. OSI Director, Sudha Murthy, and staff members Harold Smith and Gabriel Rivera gave presentations and demonstrations on grant writing and funding search procedures and techniques. The workshop gave participants a clearer understanding of grant proposal development concepts and some of the ‘dos and don’ts’ of successful funding searches. It also brought everyone up to date on the Stimulus Package recently enacted by Congress and on the rapidly evolving research and educational program funding environment. OSI will continue to conduct workshops throughout the year for main and branch campus faculty and staff, and provide information ongoing on the changing landscape for external funding.

On Thursday, April 2nd, a one-hour workshop entitled Analyzing a Request for Proposal will focus on techniques for interpreting and following the instructions provided by various funding agencies and foundations. On Wednesday, April 22nd, another one-hour workshop, entitled Why Proposals Fail, will focus on strategies for avoiding some of the common pitfalls of grant writing. These workshops will be held in cooperation with The Teaching Academy, in Room 50 of Milton Hall on the main campus. Registration for both of these workshops should be done through their website.

OSI will also be holding workshops for individual colleges, research clusters and other groups with agendas tailored to their needs, with smaller sessions available for individuals or collaborations of faculty and staff working on specific areas of interest. For more information, or to request assistance for your group, please contact the Office of Strategic Initiatives at osi@research.nmsu.edu or by phone at 646-9279.
To register with Grants and Research Information Database (GRID) go online at

http://grid.research.nmsu.edu

GRID services are available to all NMSU faculty and staff